Friday, June 14, 2019

Turunan Fungsi Logaritma Asli

Turunan Logaritma Asli

Definisi:
$ln x = \int_{1}^{x}\frac{1}{t} dt, x>0.$
Berdasarkan teorema kalkulus II,

$D_{x} ln x=\int_{1}^{x}\frac{1}{t} dt=\frac{1}{x}$

Sifat-sifatnya:
1. $ln a.b= ln a + ln b$
2. $ln (\frac{a}{b})=ln a – ln b$
3. $ln a^{r}=r * ln a$
4. $ln e = 1$, e = bilangan natural.


$y=ln(u(x))$
menggunakan aturan rantai
$\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dx} = \frac{1}{dx}.u’$

Contoh:
1) $ y=ln(x^{2}-3x+1)$
misalkan $u= x^{2}-3x+1 $
$y’=\frac{1}{dx}.u’$
$=\frac{1}{ x^{2}-3x+1}.2x-3$

2) $y=ln((\frac{1-x}{1+x}))$
menggunakan sifat nomor (2).
$=ln(1-x)-ln(1+x)$
$=\frac{-1}{1-x}-\frac{1}{1+x}$
$=\frac{-(1+x)-(1-x)}{1-x^{2}}$
$=\frac{-2}{1-x^{2}}$
$=\frac{-2}{ x^{2}-1}$
Share:

0 comments:

Post a Comment